

A Comprehensive Comparative study of
SPARQL and SQL

Vipin Kumar.N#, Archana P. Kumar*, Kumar Abhishek*
#Education and Research Division, Infosys Technologies, Mangalore

*Department of Computer Science and Engineering, MIT Manipal-576104

Abstract: With development of Semantic Web, much research
focuses on various technologies about Web ontology. Especially,
for management and searching of data in Web ontology, various
storages based on RDB and query languages (e.g., SPARQL,
RDQL and RQL) have been developed with activity. SPARQL
cannot search data in RDB model because RDB model use SQL as
query language. The Resource Description Format (RDF) is used
to represent information modeled as a "graph": a set of
individual objects, along with a set of connections among those
objects. In that role, RDF is one of the pillars of the so-called
Semantic Web. RDF Data represents a graph. Graphs are natural
way to represent things and the relationships between them. RDF
data stores are optimized to efficiently to recognize graph sub-
patterns and there is a standard query language SPARQL that is
used to query these data stores. This paper is intended to show the
differences between the two query languages. i.e. SPARQL and
SQL.
Keywords: Semantic Web, Resource Description Framework, Web
ontology language, SQL, SPARQL.

I. INTRODUCTION

As Web information increases exponentially, the current Web
faces a limit to find exact information which users want.
Semantic Web has been proposed as a solution to resolve the
aforementioned problem2. Currently, much research is focused
on development of various technologies about web ontology on
Semantic Web.
In the Semantic Web environment, description languages for
Web ontology (e.g., RDF3, RDF-S4, and OWL5) and query
languages for Web ontology (e.g., RQL6, RDQL7, and
SPARQL8) have been proposed. SPARQL recommended by
W3C is used as the most representative description language.
Query languages are typically applied to data corresponding to
particular data model9. SQL is used to retrieve, create, modify
and delete data represented in the relational model of data.
Similarly, XQUERY is used to locate and retrieve data that is
represented in the XPath data model. It is sometimes possible
to use one language to query data represented in a data model
other than that for which the language was designed. This may
be accomplished by mapping the data from its native data
model into the query’s language data model.
RDF is presented as yet another data model, distinct from the
XPath data model and from the SQL data model. It is tempting
to reject that assertion because of the tuple nature of RDF
entities. However, a close examination shows subtle
differences between collections of RDF triples and multisets of
rows in SQL tables. For example SQL tables are defined to
comprise one or more columns, each having a particular data
type. Every row in that table has exactly that number of

columns and the value of each column in each such row must
be of the column’s declared type. Notably missing from the
definition of SQL tables is the idea that rows in a given table
contain information about the data types of any of the (other)
data in that table. SQL’s metadata is recorded in s number of
“system tables”, which could be combined in some way with
the data in the table- although the criteria for such
combinations to be made meaningful are unclear. By contrast ,
a given RDF collection can be augmented by RDF triples
expressed using OWL (Web Ontology Language) constructs
that specify the class to which a given RDF entity belongs.

II. SPARQL- SPARQL PROTOCOL AND QUERY

LANGUAGE
SPARQL is a language that lets users query RDF graphs by
specifying “templates” against which to compare graph
components10. Data which matches or “satisfies” a template is
returned from the query. A triple template will contain
variables that represent triplet components (e.g., a subject,
predicate, or object within a triplet). For example the template:
?person <example:age> “21”^^example:age .
identifies a list of triplet subjects that have an example:age
property of “21”, and is analogous to asking “Who has age
21?” The SparQL query engine will return an exhaustive list of
the subject component of triples that satisfy each query through
value substitution. This is basically “query by example” (QBE)
where the user defines an example pattern that the query
engine will attempt to match using components from the data
store. This process is reasonably intuitive, and similar to QBE
approaches applied to relational data and pattern matching
within regular expressions or SQL. SparQL is implemented in
Jena through the ARQ package, and queries may be made from
within Java scripts or via a SparQL client distributed with Jena.
SPARQL is one of a number of query languages designed to
query formal representations of data such as XML (eXtensible
Markup Language), Topic Maps and RDF which consist of
data models represented as trees, topics and associations, and
directed graphs respectively11. Similar to other query
languages, SPARQL allows users to declaratively specify the
conditions required for data to be retrieved rather than
explicitly describing the individual steps required to return the
data. SPARQL provides definitions for:

 Simple matching of RDF data,
 The ability to combine multiple matches together,
 Matching data types such as integers, literals, etc.

based on conditions such as greater than, equal to,
etc.,

Vipin Kumar.N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1706-1710

1706

 Optionally matching data – that is, if certain data
does exist it must meet a certain criteria but the
query does not fail if the data doesn’t exist,

 Combining RDF data sets together to query at the
same time, and

 Ordering and limiting matched data.
Further it is highlighted that the design of an RDF query
language should support :

 The RDF abstract data model,
 Formal semantics and inference,
 XML schema data types and
 The ability to handle incomplete or contradictory

information.
SPARQL - query language for getting information from RDF
graphs. It provides facilities to:

 Extract information in the form of URIs, blank
nodes, plain and typed literals.

 extract RDF subgraphs.
 construct new RDF graphs based on information

in the queried graphs
The beneficial properties of a query language for the Semantic
Web include:

 Referentially transparent - “within the same
scope, an expression always means the same”,

 Strong answer closure - the result of a query can
be used as the input for further querying,

 Set-oriented functional – also known as a
backtracking-free logic programming,

 Incomplete queries and answers - support for data
on the Web that may not have defined schemas,

 Multiple serialisation aware - able to serialise
data to various formats including XML, OWL,
RDF and Topic Maps, and

 Queries that support reasoning capabilities - the
ability to query different data sources and infer
new statements.

Here is an example SparQL query that simply asks for a list of
up to 10 of the subject and object portions of the triples in the
file specified in the FROM clause:

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX example
<http://fake.host.edu/example-schema#>
select $s $o
from
<http://myhost.edu/rdf-example-1.rdf>
where
{
$s $p $o .
}
LIMIT 10

$s, $p, and $o are variable names that will each be assigned a
value as the query is “satisfied,” and the triplet pattern “$s,

$p,$o” will match any triple that has 3 parts, so all triples
should be
displayed. Note that variable names may also start with “?”,
and may be full words. A subset of the basic syntax of a
SparQL select query is shown below:

BASE < some URI from which relative FROM and
PREFIX entries will be offset >
PREFIX prefix_abbreviation: < some_URI >
SELECT
some_variable_list
FROM
< some_RDF_source_URL >
WHERE
{
{ some_triple_pattern .
another_triple_pattern . }.
}

Notes:
- the “<“ and “>” characters are required literals,
- the BASE and PREFIX entries are optional and BASE
applies to relative URIs appearing in either PREFIX or FROM
clauses,
- other commands that can appear in place of SELECT are:
CONSTRUCT, ASK and DESCRIBE,
- * is a valid variable list, specifying any variable returned by
the query engine, and may be preceded by DISTINCT, which
will omit duplicate triples from the resulting list,
- there may be multiple FROM clauses, whose targets will be
combined and treated as a single store,
- a “.” separating multiple triple patterns is intuitively similar to
an “and” operator,
- the term WHERE is optional, and may be omitted.

III. SQL –STRUCTURED QUERY LANGUAGE

The relational model is an existing model that could be used to
provide a compatible set based, formal model. This model has
long been used as the basis for database management. Date
defines it as consisting of three components: structure, integrity
and manipulation. It has been extended to support rules and
inferencing ,support for XML schema data types and other data
types, to query hierarchical data and to support merging data,
potentially incomplete or contradictory information, through
the use of outer joins and other techniques. The relation model
supports answer closure and referential transparency (for read-
only queries). The set of relational operators combined with the
relational model are collectively called the relational algebra.
The operations on relations originally defined by Codd include:
set operations, projection, join, Cartesian product, and
restriction. It is from these original operators that other
relational operations have been derived including: restrict,
project, join, and union.
An alternative to the relational model is SQL (Structured
Query Language). SQL is often seen as an implementation of
the relational model even though it has numerous
incompatibilities with the relational model such as bag instead

Vipin Kumar.N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1706-1710

1707

of set semantics, column ordering, duplicates and handling of
nulls. SQL has been formally reconstructed using bags (a
collection of values that allow duplicates) rather than sets (a
collection of values that allows no duplicates). From this work
it’s shown that operations such as DISTINCT and aggregate
functions are only applicable for bags and not sets. SQL’s use
of duplicate values can also cause problems with both
optimisation and query processing.
SQL also has other problems such as, “…no one really knows
what SQL is, since there are many different versions, it is
widely accepted that any version of SQL has at least two
features which are not present in the relational algebra:
aggregate operators [and it] allows a limited form of nesting by
using the GROUP-BY construct…one needs bag semantics for
the correct evaluation of aggregate functions.” Software that
depends on SQL frequently has to adapt to each vendor
specific implementation due to these differences.
Similarly, SQL’s UNION operator has a number of problems
in that it relies on a column ordering being used to match
values rather than the columns being the same type (as defined
by relational algebra). Date claims, “…given any two SQL
tables, there are typically many distinct tables that can all be
regarded as a union between two given SQL tables”.

IV. DIFFERENCE BETWEEN SPARQL AND SQL

The distinct differences between SQL and RDF are the reason
why SQL is not a natural choice as the basis of an RDF query
language. It is clear than any formal SPARQL definition
should abstract away any dependence from SQL and be solely
based on the data model it is querying, RDF.
SQL does have a large industry following so it is crucial that a
mapping from SPARQL to SQL exists. Work on this mapping
has already occurred, but further work, especially using known
SQL optimisation techniques, has yet to occur.
Previous work has highlighted specific limitations of the
current SPARQL specification and subsequent
implementations. To overcome these issues an underlying
formal model should be established. However, little work has
been done in developing and evaluating an RDF query
language that is built on formal set-based models while
maintaining a focus on SPARQL.
As both the RDF model and the relational model are both
propositional and set-based it is likely that a compatible model
for querying RDF can be provided. This should lead to two
direct advantages for users and implementers:

 It provides a formal model that unambiguously
outlines a consistent set of principles to create a
coherent foundation for the formulation of queries.
This provides a stable set of fundamentals that remain
constant as implementations or syntaxes evolve over
time.

 It allows the continuing work being done on the
relational model to be applied to querying RDF.

RDF corresponds to Entity-Relationship model. SQL tables at
least those with an explicit key of n columns could be
decomposed into n-1 entity relationship assertions for each
row, each such assertion having the form “key-value column-

name column-value”. In fact this observation provides a trivial
method of transforming SQL tables into RDF graphs.
This syntax resembles SQL, and it has similar semantics. In
particular, SQL semantics revolve around joining tables
together and then looking through every row to see if the
contents of row
fields meet specified conditions. If one thinks of a collection of
triples containing the same predicate as a (distributed) table
named by the triplet predicate and containing 2 columns, the
triplet subject and object, then the “.” operator in SparQL
queries is similar to a join, in which shared SparQL variables
within triple patterns essentially define a join condition
specifying equality. Here is a SparQL query that can be used to
search 4 files holding “live” data

PREFIX rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX example:
<http://fake.host.edu/example-schema#>
select *
from <http://myhostname.edu/smith>
from <http://myhostname.edu/jones>
from <http://myhostname.edu/george>
from <http://myhostname.edu/blake>
where
{
$s $p $o .
}
If the data were all in one file, only one FROM clause would
have been required. Here is a representation of the query
results:

| s | p | o |
==
<myname/blake>	example:fav	myname/blake
<myname/blake>	example:age	"12"
<myname/blake>	example:name	"Blake"
<myname/blake>	rdf:type	example:Person
<myname/jones>	example:fav	myname/smith
<myname/jones>	example:age	"35"
<myname/jones>	example:name	"Jones"
<myname/jones>	rdf:type	example:Person
<myname/george>	example:fav	myname/smith
<myname/george>	example:age	"21"
<myname/george>	example:name	"George"
<myname/george>	rdf:type	example:Person
<myname/smith>	example:fav	myname/jones
<myname/smith>	example:age	"21"
<myname/smith>	example:name	"Smith"
<myname/smith>	rdf:type	example:Person

where “myname” is an abbreviation for
“http://myhostname.edu”. In this query all 4 files were
searched as if they were in a single file. (Note that the URI
contents are different in this live
example.)

Vipin Kumar.N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1706-1710

1708

V. DIFFERENCE OF SYNTAX IN SQL AND SPARQL

SQL
SELECT UNIQUE E.SALARY
FROM EMPLOYEES AS E JOIN DEPARTMENTS AS D
WHERE E.ID=D.MANAGER;

SPARQL
SELECT ?salary
WHERE
{
?e rdb:employees/column#salary ?salary.
?d rdf:departments/column#manager ?e.
}

SPARQL
SELECT ?id, ?sal
WHERE { ?id HR:salary ?sal }

 SQL
SELECT emp_id, salary
FROM employees

SPARQL
SELECT ?hdate
WHERE { ?id HR:salary ?sal .
?id HR:hire_date ?hdate .
FILTER ?sal >= 21750 }

SQL
SELECT hire_date
FROM employees
WHERE salary >= 21750

SPARQL
SELECT ?hdate
WHERE { ?id HR:salary ?sal .
?id HR:hire_date ?hdate .
FILTER ?sal >= 21750 }

SQL
SELECT v.hire_date
FROM emp_vars AS v, emp_consts AS c
WHERE v.salary >= 21750
AND v.emp_id = c.emp_id

It is possible to translate SPARQL expressions into SQL
expressions thus allowing users to store RDF collections in
relational database if required.
SQL: Great for finding data from tabular representations, can
get complex when many tables are involved in a given query
SPARQL: Good pattern matching paradigm, especially when
relationships have to be used to answer a query.

TABLE I
DIFFERENCE BETWEEN SPARQL AND SQL
Compone
nt Name

Description SQL SPARQL

Type
Name

A data type
integer,
char, sno,
name

subject, predicate,
object, uri, literal
and bnode

Attribute
Name

A distinct,
descriptive
name

status, city,
sno, sname

Variables: ?s, ?city

Node Postions:
subject, predicate,
object

Attribute

A
combination
of type
name and
attribute
name

status:integ
er,
char:city,
sno:sno,
sname:nam
e

?s:subject,
p1:predicate,
?city:object

Tuple or
Tuple
Value

A set of
attribute and
value pairs

sno
sno(‘s1’),
sname
name(‘smit
h’), status
20, city
‘london’

?s:subject(#s1),
p1:predicate(#nam
e),
o1:object(‘smith’)

Heading
A set of
attributes

sno sno,
sname
name,
status
integer, city
char

?s subject, p1
predicate, o1
object

VI. CONCLUSION:

SPARQL is a query language used to query RDF data stores.
While SPARQL may initially look like SQL you will see that
there are important differences because the data is graph-based
so queries match graph patterns instead SQL’s relational
matching operations. So the syntax is similar but SPARQL
queries graph data and SQL queries relational data in tables.
Each of the query language has advantages and disadvantages.
SQL and the relational model are well designed to represent
highly regular or structured data such as that used by many
business processes. Widely used examples include personnel
and departments, students and classes, and manufacturing
components. Such data usually includes a value for every
column of every table. SQL also supports a special value- a
null value- to represent data that is missing, unknown or
inapplicable. The possibility of null values complicated the
definition of and queries written in the SQL language focuses
on identifying data for which most or all components are
available and combining data based on the values of those
components, by using SQL operators such as JOIN or UNION.

Vipin Kumar.N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1706-1710

1709

REFERENCES
[1] Pratical Semantic Web and Linked Data Applications by Java,
JRuby, Scala and Clojure Edition.
[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web”,
Scientific American, May 2001, Vol. 284,No. 5, pp. 34-43.
[3] W3C, Resource Description Framework, http://www.w3.org/RDF/,
2004.
[4] W3C, RDF Vocabulary Description Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/, 2004.
[5] W3C, Web Ontology Language,http://www.w3.org/2004/OWL/,
2004.
[6] The RDF Query Language (RQL),
http://139.91.183.30:9090/RDF/RQL/
[7] RDQL - A Query Language for RDF, W3C Member
Submission,http://www.w3.org/Submission/2004/SUBMRDQL-
20040109/, 9 January 2004.
[8] SPARQL Query Language for RDF, W3C Working Draft,
http://www.w3.org/TR/2006/WD-rdf-sparql-query- 20061004/, 4 October
2006.
[9] SQL, XQUERY and SPAQL by Jim Melton.
[10] Michael Grobe : RDF, Jena, SparQL and the “Semantic Web”
[11] Querying the Semantic Web using a Relational Based SPARQL by
Andrew Newman.

Vipin Kumar.N et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (4) , 2011, 1706-1710

1710

